ECON42720 Causal Inference and Policy Evaluation 1 Foundations of Causality

Ben Elsner (UCD)

About this Lecture

In this lecture, we will learn about **causal inference** based on **causal diagrams** (also called **directed acyclical graphs**, or DAGs)

We learn:

- how to think about causal questions in causal diagrams (DAGs)
- to develop research designs based on DAGs
- to detect common pitfalls in empirical analyses

Resources

This lecture is based on

- Cunningham (2020), Mixtape: Chapter 3
- Huntington-Klein (2022), The Effect: Chapters 6-8

The Effect is very accessible and goes step-by-step through all things DAGs. *The Mixtape* chapter is more concise. Both are excellent resources.

Part of the material of this lecture is also covered in the first two lectures of my **YouTube playlist** on Causal Inference: LINK

Find more about the course on the course page

Causality

Oxford dictionary: the relationship between cause and effect

Causality is a theoretical concept. It cannot be (directly) tested with data

 \Rightarrow to make a causal statement, one needs a clear theory

The methods of causal inference are "rhetorical devices' '

they allow us to establish causality under certain assumptions
 since we want to identify a causal effect, these are called identifying assumptions

Causality

Formally, in econometrics (and beyond), causality involves two random variables: a treatment D and an outcome Y

The treatment can either be binary, $D \in \{0,1\}$ or continuous $D \in \mathbb{R}$

We speak of a causal effect of D on Y if a change in D triggers a change in Y

Causal Diagrams

Causal diagrams (also called "**directed acyclical graphs**'', or DAGs) are a powerful tool to understand:

- how causal effects can be identified from observational data
- which variables we should or should not condition on

DAGs are common in **computer science** and are slowly making their way into econometrics

Here we will briefly introduce DAGs.

Book recommendation:

- The Book of Why (Pearl & Mackenzie, 2018)
- For a more profound treatise, see Pearl (2009)

Causal Diagrams

Ingredients

- **nodes**: random variables
- arrows: causal relationships
- missing arrows indicate the absence of a causal relationship

Direct causal effect of the treatment D on the outcome Y

D
ightarrow Y

Indirect causal effect: D affects Y through a mediator X

$$D \to X \to Y$$

How to Construct and Use a DAG

Step 1: Construct a DAG

- 1. Identify the causal question you want to answer
- 2. Identify the variables that are relevant for the causal question
- 3. Draw a DAG that represents the causal relationships between the variables

Challenges:

- Which DAG is the right one?
- Every arrow and the absence of an arrow is an assumption
- Is the DAG too simplistic or too complex?

Step 2: Causal Identification: use a DAG to identify the causal effect of interest

▶ Determine which causal forces you need to eliminate to answer the causal question

- This gets done through closing back door paths (more on that soon)
- Once that's done we can use standard econometric methods to estimate the causal effect of interest
- But that's also what's really hard in practice

Example: Police Presence and Crime

Classic case: the correlation is positive. Why?

Example: Police Presence and Crime

A DAG can help...

Source: The Effect, Figure 6.6

Example: Police Presence and Crime

Assumptions in the DAG:

- 1. LaggedCrime doesn't cause LawAndOrderPolitics
- 2. PovertyRate isn't a part of the data generating process
- 3. LaggedPolicePerCapita doesn't cause PolicePerCapita (or anything else for that matter)
- 4. RecentPopularCrimeMovie doesn't cause Crime

Trade-off

- Omit too many variables: DAG is too simplistic and we may omit variables that are very important
- Omit too few variables: if a DAG becomes too complex, it is very difficult to identify the causal effect of interest

Huntington-Klein (2022), Ch. 7, offers many useful tips on how to draw causal diagrams

- Thinking about the "data-generating process", i.e. all the relevant variables and their causal relationships
- **Simplifying DAGs** by getting rid of redundant or unimportant variables
- Avoiding cycles (i.e. loops) in DAGs

Cycles in DAGs

Cycles are a big no-no in DAGs

- They imply that a variable causes itself
- Challenge: teach a cycle to a computer...

How to Avoid Cycles?

IPunchYou ← → YouPunchMe

We can add a time dimension...

Or we can add a variable that only affects one of the variables in the cycle

Example: I flip a coin, and if it's head I'll...

CoinFlip > IPunchYou > YouPunchMe

Now there is no cycle because the coin flip only affects my decision, but not yours. You just react to my decision.

A common challenge in applied econometrics is to **separate a causal effect** from the **influence of confounders**

Here we have two paths:

- The direct path: $D \rightarrow Y$
- ▶ A backdoor path: $D \leftarrow X \rightarrow Y$

As long as there is no collider (introduced in a few slides), we speak of **backdoor path** with a condfounder as being **open**

We can only identify the causal effect $D \rightarrow Y$ if we condition on/adjust for X

Causal Diagrams - Confounders Problem: often we don't observe a confounder

u lies on the **backdoor path** from *D* to *Y* but is **unobservable** (\Rightarrow dashed line)

• open backdoor \Rightarrow *u* is a confounder

Problem: selection into treatment. In microeconomics we learn

- people make rational choices...
- ...as do firms
- ... as do governments

Examples for selection into treatment:

Going to the gym makes you healthier

- good reason to believe so
- but people who go to the gym are different from those who don't
- \blacktriangleright observed correlation \neq causation

Exporting boosts firm profitability

- good reason to believe so
- but exporters are different in many ways from non-exporters
- observed correlation \neq causation

We are interested in the **effect of education D on earnings Y**, but also need to think about parental education (PE), family income (I) and unobserved family background (B)

- **Causal effect**: $D \rightarrow Y$
- **b** Backdoor path 1: $D \leftarrow I \rightarrow Y$
- **Backdoor path 2**: $D \leftarrow PE \rightarrow I \rightarrow Y$
- **Backdoor path 3**: $D \leftarrow B \rightarrow PE \rightarrow I \rightarrow Y$

To identify the causal effect, we need to shut the backdoor paths 1-3

- we can do so by conditioning on /
- ▶ i.e. we control for *I* in a regression
- ▶ we could also control for *PE*, but this wouldn't help with identification

Note that this reasoning depends on the DAG being the correct one

- If $B \rightarrow Y$, we would have an additional open backdoor path
- In that case, controlling for I would not be sufficient
- ▶ If we cannot observe *B*, we know that our estimate is most likely biased

Causal Diagrams - Colliders

Unlike confounders, colliders are a little known source of bias

In both examples the **backdoor path** $D \rightarrow X \leftarrow Y$ is **closed**

Conditioning on a collider can open a backdoor path and lead to bias

▶ In particular, it can induce a **spurious correlation** (between D and Y)

Causal Diagrams - Colliders

To deconfound $D \rightarrow Y$, we would need to **control for** U1 **and** U2

But what if we controlled for an observable variable / instead?

$$\blacktriangleright D \leftarrow U1 \rightarrow I \leftarrow U2 \rightarrow Y$$

 $\blacktriangleright D \leftarrow U2 \rightarrow I \leftarrow U1 \rightarrow Y$

Controlling for I makes the situation worse because it opens both backdoor paths

Colliders - Example from Cunningham (2020)

 \ldots among movie stars, we can observe a negative correlation between talent and beauty

If talent and beauty are unrelated in the population,

- then the observed correlation may reflect collider bias
- due to non-random sample selection

Colliders - Example from Cunningham (2020)

Suppose movie stars are those in the top 15% of *score=beauty+talent*

The Bad Control Problem: Condition on a Mediator

"We estimate the effect of temperature on conflict irrespective of income''

Credit: Marshall Burke's Blog (G-FEED)

Conditioning on a mediator introduces selection bias

 \Rightarrow Income is not as good as randomly assigned. It is a function of temperature.

Conditioning on income will lead to a downward bias.

- The direct effect is probably positive
- High temperature reduces income
- ► Lower income → more conflict

The Bad Control Problem

Simulation results (true effect in Column 1):

	(1)	(2)
	conflict	conflict
temperature	0.0540***	0.0402***
	(80.43)	(30.77)
income		-0.00277***
		(-12.30)
_cons	-0.557***	-0.558***
	(-52.61)	(-53.15)
N	10000	10000

In many cases, bad control problems can be easily detected.

▶ If a variable is on the causal path, don't control for it.

But sometimes **bad controls** are the result of **sample selection**.

Example: racial bias in policing

Racial Bias in Police Use of Force (Fryer, 2019)

Administrative data from NYC, Texas, Florida, LA County.

Observes all stops of the police:

- race of person stopped
- use of force by the police
- contextual variables (place, time, ...)

Findings:

- Disproportionate use of force against Blacks and Hispanics
- This is true even when controlling for context

Racial Bias in Police Use of Force (Fryer, 2019)

Fryer acknowledges several **potential problems**:

- Mis-reporting of the use of force
- Probability of interacting with the police is higher for Blacks
- Whites and Blacks stopped by the police may differ on average

Critique by Knox et al. (2020): bias "goes deeper''

Bad Controls: Endogenous Sample Selection

Problem: it is not random who is stopped by the police.

- Officer behavior is unobservable
- ▶ No information on people who are observed but not investigated

Knox et al. (2020): this is equivalent to

- conditioning on a mediator
- while not accounting for a confounder

Bad Controls: Endogenous Sample Selection

Studies only use observations with Stop = 1

Bounding exercise in Knox et al. (2020)

 \Rightarrow Ignoring the probability of stopping leads to a severe underestimation of the racial gap in use of force

Further Readings

Imbens (2020): PO vs DAGs

Self-recommending

Montgomery et al. (2018): bad control problem in experiments

Insightful description based on potential outcomes and DAGs

Schneider (2020): collider bias in economic history research

How to detect and overcome collider bias (applications)

Controlling for Variables in a Regression

The main takeaway from studying causal diagrams:

they clarify which variables we should (and should not) control for

Control for confounders (use the backdoor criterion)

Do not control for colliders

Do not control for mediators ("bad controls")

Causal diagrams are rarely shown in papers, but they are a very **useful first step** when thinking about **causality**

A researcher has to take a stand on causal relationships between variables:

- what is a confounder, mediator, collider?
- this requires some theoretical reasoning
- and cannot be answered just by looking at data

Drawing DAGs: Dagitty

Link to Dagitty Browser

Drawing DAGs with R and Dagitty

```
library(dagitty)
```

```
g1 <- dagitty( "dag {
    W1 -> Z1 -> X -> Y
    Z1 <- V -> Z2
    W2 -> Z2 -> Y
    X <-> W1 <-> W2 <-> Y
}")
```

plot(graphLayout(g1))

Drawing DAGs with R and Dagitty

References

Cunningham, Scott. 2020. Causal Inference: The Mixtape. Yale University Press.

Fryer, Roland G. 2019. An Empirical Analysis of Racial Differences in Police Use of Force. Journal of Political Economy, 127(3), 1210–1261.

Huntington-Klein, Nick. 2022. The Effect: An Introduction to Research Design and Causality. Chapman and Hall/CRC.

- Imbens, Guido W. 2020. Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics. Journal of Economic Literature, 58(4), 1129–79.
- Knox, Dean, Lowe, Will, & Mummolo, Jonathan. 2020. Administrative Records Mask Racially Biased Policing. American Political Science Review, 114(3), 619–637.
- Montgomery, Jacob M., Nyhan, Brendan, & Torres, Michelle. 2018. How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It. American Journal of Political Science, 62(3), 760–775.

Pearl, Judea. 2009. Causality: Models, Reasoning and Inference. 2nd edn. New York, NY, USA: Cambridge University Press.

Pearl, Judea, & Mackenzie, Dana. 2018. The Book of Why: The New Science of Cause and Effect. 1st edn. New York, NY, USA: Basic Books, Inc.

Schneider, Eric B. 2020. Collider bias in economic history research. Explorations in Economic History, 78, 101356.

Draw a DAG for the following causal relationships:

- ▶ Exporting (by a firm) -> Firm profitability
- ▶ Participation in a job training programme -> likelihood of re-employment
- \blacktriangleright Exposure to an earthquake *in-utero* -> health at age 50
- \blacktriangleright Attendance of a mixed-sex school -> gender attitudes later in life
- ▶ Experience of conflict early in life − > voting later in life

Group work 2

Deconfound the following DAG of the effect of education on income:

Group work 3

Deconfound the following DAG of the effect of education on income:

.

benjamin.elsner@ucd.ie

www.benjaminelsner.com

Sign up for office hours

YouTube Channel

@ben_elsner

LinkedIn

Contact

Prof. Benjamin Elsner

University College Dublin School of Economics Newman Building, Office G206 benjamin.elsner@ucd.ie

Office hours: book on Calendly